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ABSTRACT 
Although many defense mechanisms against buffer overflow 

attacks have been proposed, buffer overflow vulnerability in 
software is still one of the most prevalent vulnerabilities 
exploited. This paper proposes a micro-architecture based 
defense mechanism against buffer overflow attacks. As buffer 
overflow attack leads to a compromised return address, our 
approach is to provide a software transparent micro-architectural 
support for return address integrity checking. By keeping an 
uncompromised copy of the return address separate from the 
activation record in run-time stack, the return address 
compromised by a buffer overflow attack can be detected at run 
time.  Since extra copies of return addresses are already found in 
the return address stack (RAS) for return address prediction in 
most high-performance microprocessors, this paper considers 
augmenting the RAS in speculative superscalar processors for 
return address integrity checking. The new mechanism provides 
100% accurate return address prediction as well as integrity 
checking for return addresses. Hence, it enhances system 
performance in addition to preventing a buffer overflow attack.  

 

Categories and Subject Descriptors 
K.6.5 [Management of Computing and information System]: 
Security and protection – invasive software, unauthorized access 

General Terms 
Security 

Keywords 
computer security, intrusion tolerance, buffer overflow, computer 
architecture.  
 
1. INTRODUCTION 

Buffer overflow vulnerabilities constitute a significant portion 
of overall attacks at present. By overflowing a buffer near a 
return address at run-time stack, an attacker can alter the control 
flow of a program, which may activate the victim system into  

 
 
 
 
 
 
 
 

 
privileged mode and execute an arbitrary code on the victim's 
system. This vulnerability has been exploited by several 
notorious worms such as Morris worm [13], Code Red worm [8], 
W32/Blaster worm [12] and others. Since the Morris worm 
incident, buffer overflow attack problems have been one of the 
most critical security issues and have been studied extensively. 
However, these vulnerabilities are still the most prevalent type of 
security problem. According to ICAT statistics [18] for March 
2003, seven of the ten most popular vulnerabilities are buffer 
overflow vulnerabilities. A similar survey [statistic] is available 
from CERT. Figure 1 shows the total number of advisories and 
the number of advisories related to buffer overflow: buffer 
overflows were 54.1% in the year 2002 and 74.1% in the third 
quarter of 2003 of the total advisories.  
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Figure 1. CERT Advisories Report (Oct. 16, 2003) 
 

 Buffer overflow vulnerability exploitations are still one of the 
major security issues, although numerous defense mechanisms 
were introduced and security patches have been released. There 
are multiple reasons for this. One reason is “afterward-patch”. 
Programs are still written and distributed with the vulnerabilities, 
and patch can be made only after the vulnerabilities are exploited. 
Recently, the W32/Blaster worm [12] exploited buffer overflow 
vulnerability in Microsoft Windows RPC implementation. 
Another reason for exploitation may be program source code 
accessibility. Most software solutions [5, 6, 24] are compiler-
driven patches, meaning they require source code changes and 
recompilation. It is difficult and sometimes even impossible to 
obtain source code for commercial software. Another reason can 
be the number of programs that need to be patched. There are 
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numerous existing copies of legacy software that require patching, 
making it impossible to patch all existing vulnerable programs.  
 Our approach is to provide software transparent micro-
architecture support for return address integrity checking. By 
keeping an uncompromised copy of return address, a 
compromised return address at run-time stack can be detected.  
Since extra copies of return addresses are already found in return 
address stack (RAS) in high-performance microprocessors with 
return address prediction, this paper considers augmenting the 
RAS in modern speculative superscalar processors with return 
address prediction. A simple RAS management scheme used in 
current processors cannot assure the correctness of return address 
integrity checking because the contents of the RAS can be 
corrupted even without any attack. For the return address 
integrity checking against buffer overflow attack, the RAS should 
always be able to provide uncompromised correct return address. 
However, the contents of the RAS can be corrupted due to its 
limited size in practice and its speculative execution. This paper 
proposes a new RAS management mechanism to guarantee 
uncorrupted RAS contents so that it can be used for return 
address integrity checking.  
 The RAS employed for return address prediction is fairly 
limited in size because most programs have relatively a small 
call-depth. For example, the Alpha 21264 processor has 32 RAS 
entries [10]. The P6 processor has 16 RAS entries [19]. Yet, 
deeply nested calls or recursive functions in some programs are 
able to cause an over-run corrupting the RAS since the size of the 
RAS is limited. Therefore the size of the RAS must be large 
enough to accommodate an arbitrary call-depth. By spilling 
return addresses in the RAS to a reserved memory area, the 
illusion of an infinite-size RAS can be created. However, another 
vulnerability can be generated from using memory: an adversary 
may be able to tamper the spill area in memory. To check the 
integrity of RAS spill area in memory, we uses a memory 
authentication scheme using collision-resistant hash trees [22], 
similar to the one proposed by Blaise et al [15].  

In speculative superscalar processors with return address 
prediction, calls and return instructions speculatively update the 
RAS based on the prediction at instruction fetch stage. The RAS 
is corrupted by the speculative update if the prediction turns out 
to be wrong. Instead of updating the RAS at the fetch stage, our 
new RAS management mechanism updates the RAS at the 
instruction commit stage. In order to update the RAS at the 
instruction commit stage and provide return address prediction 
value during instruction fetch for speculative execution, the new 
management scheme uses shadow state registers (SSR) to 
provide a return address prediction value. One can also say that 
the SSR is kind of a “reorder buffer” (ROB) for the RAS. After a 
return or a call instruction is committed, the RAS is updated from 
the SSR as the register file in out-of-order processors is updated 
from the ROB at instruction commit stage. In this way, RAS 
corruption from a mis-speculated return or from call instructions 
can be prevented with a small overhead. This overhead can be 
negligible and offset by performance enhancement from reduced 
return address mis-prediction. 

Non-local control transfer is another concerned issue of the 
RAS. For instance, the language C has system functions called 
setjmp(), and longjmp(). Since these instructions can bypass 
multiple stack frames without maintaining the RAS, they cause a 
misaligned stack frame. If we assume that only unmatched 
call/return sequence can corrupt RAS, non-local control transfer 

problem can be solved by pushing the target address into RAS 
and popping RAS until matched return address is found. If the 
matched return address is not found in the entire RAS including 
the spilled area, one can assume that undesired modification of 
the return address is found. Context switch also can cause 
misaligned RAS. Extending the spill/fill mechanism can solve the 
problem caused by a context switch: when a context switch 
occurs, entries of the switched context are spilled and entries of 
the switching context are filled.  Here, you should explain the 
problem of the context switch before you talk about the solution 
(the spill/fill mechanism). 

 
The remainder of this paper is organized as follows. Section 2 

studies buffer overflow attack. Section 3 describes the new RAS 
management scheme. The simulation result and evaluation are in 
Section 4. Section 5 summarizes related works. The discussion is 
in section 6 and section 7 concludes the paper 

 
2. BUFFER OVERFLOW ATTACKS  

Buffer Overflow Attack is the most common attack to gain 
control of a victim system both locally and remotely. To control 
the victim system, an attacker has to gain sufficient privilege. 
However, an attacker does not have the privilege to control a 
victim system in most cases. Therefore, an attacker subverts the 
function of a privileged program and injects its attack code to be 
executed with the privilege. To achieve the attack, an attacker 
typically follows three steps: 

1.  Inject attack code or find suitable existing code for attack. 
2.  Change the control flow of the privileged program   so 
that the attack code can be executed with   sufficient privilege. 
3.  Execute desired code. 

 In order to achieve these steps, the following conditions 
should be met: the attacker must be able to change the control 
flow of the privileged program so that the attacker can 
compromise the victim system and the attack code should be 
placed in an executable area or already exist in the code area. One 
popular attack is known as stack smashing. A stack contains 
parameters of called functions and return address. A stack 
smashing attack fills up the stack area and modifies the return 
address to an attacker’s desired location.  In this attack method, 
an adversary can achieve first two steps easily. An adversary fills 
the stack area with the desired attack code and replace return the 
address with the location of the attack code.  

 
2.1. Buffer overflow error 

A buffer overflow is the result of streaming a large amount of 
unexpected data into a buffer. The problem arises because while a 
stack grows down, a buffer grows up in the run time stack area.  
So if a buffer overflow is generated it overwrites the old function 
pointer (FP) and return address. Figure 2 shows a typical buffer 
overflow coding error. 

This code generates a segmentation violation error. The 
function func() copies a supplied string without bounds checking 
by using strcpy(). Simple strcpy() copies the contents of *str ( 
string) into buffer[] until a null character is found in the string. 
Notice the buffer size is much smaller than the string size; hence 
a buffer overflow is generated. After filling the buffer with ‘A’, 
the code will overwrite the old FP and return address and even 
*str with ‘A.’ Since the ASCII value for ‘A’ is 0x41, the 
overwritten value for the return address is 0x41414141.  This is 
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outside of the process address space, causing the segmentation 
violation. This vulnerability results in critical security problems. 
Since stack area is executable area, arbitrary code can be 
executed in the stack. By injecting an attacker's desired attack 
code instead of ‘A’ and modifying the return address to point to 
the attack code, an attacker can gain control of a victim system.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Typical buffer overflow error 
 

2.2. Attack code (payload) 
Attack code can be a hacker’s own program or system 

library routine [1, 3, 19]. Figure 3 shows the example code 
to spawn a shell in a C program in Linux system. This 
code is small and very simple, but it provides a powerful 
shell for hackers. The hackers can via a buffer overflow 
put the shell code in the buffer area as a payload. From that 
they can gain complete control of the victim system. 
Another attack code can be a system library routine.  

 
#include <stdio.h> 

void main() { 
char *name[2]; 
name[0] = “/bin/sh”; 
name[1] = NULL; 
execve ( name[0], name, 
NULL);} 
 

Figure 3. An example C code for spawning a shell and its 
binary code 

 
 It is also possible to use existing library routines as malicious 

code [3]. There is a way to discover the address of useful library 

routines that can be used to download the executable program of 
the attacker’s choice. The routine saves executable code as a file 
and automatically executes the downloaded program from 
Internet. In this case, buffer overflow attack facilitates 
downloading a virus or malicious code without user’s consent.
 W32/Blaster worm [12] exploits the buffer overflow 
vulnerability in Microsoft RPC implementation to generate 
Denial of Service attack on Microsoft windows update server. 
The worm scans a vulnerable system and generates buffer 
overflow attack on the vulnerable system to download 
msblast.exe file from the compromising host.  After downloading 
the file, it executes the file to propagate to other system.   

 
3.  MICRO-ARCHITECTURAL DEFENSE 
MECHASIM (RAS MANAGEMENT) 

 
3.1.RAS size and Overflow/Underflow control 

Since the RAS has fixed number of entries, more calls than 
just the RAS entries can corrupt the RAS, which is a circular 
buffer. Thereafter, corresponding returns cause underflow by 
popping empty stack. In order to avoid return address corruption 
resulting from capacity limitation, the RAS is spilled and filled in 
case of stack overflow and underflow. To monitor the number of 
entries in the stack, a bottom of stack (BOS) pointer is introduced. 
Hence the number of stack entries can be calculated from the 
difference between the top of stack (TOS) and the BOS. When 
the number of entries in the RAS exceeds a certain amount, a 
portion of the RAS is spilled into backup storage. A chunk of 
return address from the RAS is spilled from the BOS into 
memory and then the BOS pointer is adjusted to point to the 
bottom of the RAS. Note that the RAS is a circular buffer. When 
the number of contents is below a given threshold, the spilled 
return addresses are loaded back from backup storage. A chunk is 
filled from backup storage to RAS and then the BOS pointer is 
adjusted. Since only a limited number of portions is spilled and 
filled, the operation can be paralleled with other instructions. 
Therefore, the overhead from accessing memory to perform a 
spill and fill operation can be minimized.  

The number of spill and fill operation is affected by the size 
of RAS and the size of a chunk. Since a deeper RAS can reduce 
the frequency of spill and fill operation, a deeper RAS is 
desirable. Most programs in SPEC2000 benchmark show the 
maximum call-depth less than 64. 

The size of a chunk can also affect the frequency of a spill 
and fill operation. In other words, the sequence of call and return 
instructions can affect the frequency of spill and fill operation. 
For instance, after spill operation, when consecutive calls are 
issued more than the size of a chunk, another spill operation will 
occur. Hence, smaller chunk size would cause frequent spill and 
fill operations. However, if the size of the chunk were improperly 
large, it would cause an immediate spill/fill operation after the 
fill/spill operation.     

 
3.2.Backup storage protection  

Although RAS spill and fill procedures are not visible in a 
program, an adversary could access backup storage and change 
data since backup storage is in a memory area. Therefore, the 
reserved memory area should be protected from any unauthorized 
(try using words other than malicious) access. In our RAS 
management scheme, we consider two different approaches. One 

*str 

Ret 

old FP 

buffer[16] 

Stack growth 

Buffer growth 

Higher memory 

Lower memory 

“\xeb\xlf\x5e\x89\x76\x80\x31
\xc0\x88\x46\x07\x89\x46\x0c
\xb0\x0b\x89\xf3\x8d\x4e\x08
\x8d\x56\x0c\xcd\x80\x31\xdb
\x89\xd8\x40\xcd\x80\xe8\xdc
\xff\xff/bin/sh”; 
 

void func(char *str){ 
char buffer[16]; 

     strcpy (buffer,str);} 
void main(){ 
     char string[256]; 
     int i; 

 for ( i=0; i< 255; i ++) 
string [i]= ‘A’; 

  func(string);} 
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approach is to utilize virtual memory protection at an OS level. 
Most microprocessors support virtual memory protection at the 
page level. The size of a page is fixed at 4 KB for the IA-32 
processor and from 8KB up to 64KB for the Alpha 21264. In a 4 
KB-page, 1024 32-bit return addresses can be stored. If the 
number of spilled return address is greater than 1024, another 4 
KB-page can be reserved. In this way, unprivileged backup 
storage access can be prevented. However, if the number of 
spilled return addresses is much smaller than 1024, 4 KB of 
memory is wasted, which is considered to be very small overhead 
in our current system. If we assume that there is no physical 
attack, the virtual memory protection can preserve backup 
storage from malicious access in a trusted OS.  

Another approach is to validate backup storage using memory 
authentication. Blaise et al implemented an integrated Merkle 
tree / caching scheme to efficiently authenticate all or part of the 
memory area [15]. A Merkle tree [22] is a hash construct that 
verifies the integrity of a data object. Each leaf is a data object 
and each node in a tree is hash value for concatenation of 
children nodes. Assuming that the root value is retrieved from a 
trusted source, the integrity of each data object can be verified 
with a small amount of hash data. Figure 4 shows the layout of a 
Merkle tree where H is a collision intractable hash function and 
symbol ‘+’ denotes concatenation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
By checking the hash value with the value stored in its parents 

and by repeating verification until a value in a trusted source is 
found, we can verify the integrity of each node. For instance, 
when only “Root” hash value is in secure place, in order to verify 
the integrity of d1, calculations of hash values A, B, C, D, E and 
F are required. However if E is also in trusted source, the 
integrity of d1 can be verified with only B and E. In practice, any 
one-way hash function such as MD2, MD5 [26], or SHA can be 
used as a collision-resistant function. In order to reduce the 
number of hash check, k-ary trees can be used. For a balanced 
tree, the number of hash checks to perform is logk(N), where N is 
the amount of memory protected and k is the number of children 
nodes. The number of hash checks is same as the average depth 
of a tree.  

Hash-tree based memory verification computes and checks a 
hash for every read from memory and it should compute and 
store a hash on write-back memory for a large amount of memory 
area in a secure processor such as XOM [14, 21]. If the memory 
authentication were implemented on normal processor, any 
memory write-back, which includes unauthorized memory write, 
would update hash value and memory. Hence it cannot detect 
unauthorized data modification. However, although our approach 

is based on a normal processor, this type of memory 
authentication can be applied to ensure the integrity of backup 
storage, because the memory authentication only verifies the 
backup storage, where is only accessed by the RAS, and the hash 
value is only updated by the RAS spill operation. In other words, 
RAS spill operation is trusted because it is transparent for 
software and independent from other running programs.  

Figure 5 shows the high level schematic for backup storage 
authentication. A new hardware RAS Engine (RASE) manages 
the RAS.  The RASE monitors the RAS, and if the number of 
RAS entries reaches a threshold, the RASE spills and fills the 
RAS into and from backup storage. During the spill and fill 
operation, a hash unit generates hash value for a spilled or filled 
chunk to check the integrity of the data. During spill operation, 
the hash value is stored into private memory area. When a chunk 
of return addresses is filled from reserved area in main memory, 
the hash unit calculates hash value and checks the integrity of the 
data. This authentication process can be performed 
simultaneously with other work.  When a fill occurs, the spilled 
return address will be passed into the RAS from backup storage 
while the hashing unit checks the integrity of data by checking 
hash value in private memory and calculated hash value. Later, 
when the hashing unit detects unauthorized modification of data, 
it raises an exception to halt the program. 

 

 
Figure 5. A high level schematic for backup storage 

authentication 
 
 To evaluate the cost of our new RAS management scheme we 

consider MD5 [26] algorithm. MD5 takes 512-bit block and 
generates 128-bit digest. Hence, 4K of hash values can be stored 
in 64KB private memory. When the hash value exceeds the 
available storage, two of the oldest hash values are concatenated 
and new hash value is generated. For instance, let’s assume that 
private memory can have 3 hash values. When, in Figure 3, hash 
value D is stored after has value A, B, and C, parent hash value E 
is generated from the concatenation of hash value A and B to 
replace A and B with D and E. After verifying the corresponding 
chunk of hash value D, oldest two chunks are read and hash 
values A and B are generated to check the integrity of two chunks 
with hash value E. Upon successful verification, hash values of D 
and E are replaced with A and B.  

 
3.3.RAS update and speculation.  

 There are two basic approaches to avoid RAS corruption 
resulting from a mis-speculated RAS update. One way is to 
preserve the history of the RAS, similar to Smith and Pleszkun’s 
history file [14], and recover the RAS from a mis-speculated 
update. Skadron et al [23] has shown the repair mechanism to be 
very accurate, thereby improving performance relative to a stack 

Root = H (E+F) 
 
 

E = H (A+B)     F = H (C+D) 
 
 
 

A =H(d1) B =H(d2)  C =H(d3) D=H(d4) 
 

Figure 4.  Merkle Tree  
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with no repair mechanism. The repair mechanism functions by 
storing the top of the stack pointer (TOSP) and the top of the 
stack pointer contents (TOSC) to shadow state registers and the 
RAS when a call or return instruction is fetched. After detecting a 
mis-speculation during the commit stage, the TOSP and the 
TOSC are restored to the RAS. Another approach to protect the 
RAS from a mis-speculated update is to keep uncommitted return 
or call state information in shadow state registers and update the 
RAS from it after the instruction is committed, similar to the 
future file. In this scheme, only the call instruction stores the 
TOSP and the TOSC into shadow state registers, while the return 
instruction stores only the TOSP into shadow state registers. 
When mis-speculation is detected, the shadow status registers are 
simply flushed. In contrast to the first approach of the RAS repair 
mechanism, the second approach saves newer state information 
to the shadow state register. Since the RAS repair mechanism 
updates the RAS speculatively in the instruction fetch stage, it 
updates the RAS more frequently than the second approach. How 
often the RAS is updated affects the frequency of the 
spilling/filling of the RAS contents to and from the reserved 
memory area. Hence, we chose the second approach.   

RASE also manages the shadow status registers (SSR). If a 
return or call instruction is determined to be mis-speculated, it 
flushes the SSR. Figure 6 shows a high level schematic of our 
return address stack mechanism. There are two pointers – HEAD 
and NEXT for the SSR –, which behave similarly to the reorder 
buffer.  The NEXT pointer points to the next available slot in the 
SSR. The HEAD pointer points to the SSR slot that contains the 
information of the RAS for the oldest return or call instruction 
not committed yet. The shadow register has two entries for each 
slot: the top of stack pointer (TOSP) and the top of stack contents 
(TOSC). When a call instruction is fetched, it updates the SSR 
with increased the TOSP and a return address as the TOSC. 
When return instruction is fetched, the SSR is updated with 
decreased the TOSP and invalidated the TOSC.  It searches a 
return address from the NEXT pointer to provide a return address 
prediction value. When a call or return instruction is committed, 
the RAS is updated from the TOSP and the TOSC pointed to by 
the HEAD pointer. If the TOSC is invalid, only the TOSP 
updates the TOS in the RAS since the entry corresponds to a 
return instruction. The size of the SSR depends on the number of 
in-flight call and return instruction. For example, a MIPS R10000 
processor supports up to four in-flight call and return instructions. 
Similar requirement apply based on pipeline depth between the 
instruction fetch and commit stages. For deeper pipelined 
processor, the depth of speculation will dictate the SSR size. 
When the SSR is full, the next instruction may overwrite the 
oldest instruction entries since the last instruction, which was 
pointed by the HEAD pointer, is already committed. The 
summarized steps are: 

 
1. For the case where the NEXT and the HEAD pointers 
point to the same location, the TOSP points to the top of the 
RAS as the TOS does 
a. When a return instruction is fetched, the value pointed by 
TOS in the RAS is the prediction value. TOSP becomes 
TOSP-1 and is stored into next available SSR slot (pointed by 
the NEXT pointer). The TOSC field is marked as invalid and 
the NEXT pointer is incremented by one. 
b. When a call instruction is fetched, the return address (PC+ 
instruction size) is copied into the next available TOSC field. 

Increased TOSP is stored into the TOSP field in the SSR slot 
(pointed by the NEXT pointer) and then the NEXT pointer is 
incremented by one. 
 
2. For the case where a call or return instruction is already 
fetched but not committed yet 
a. When a return instruction is fetched, the previous slot of 
the slot pointed to by the NEXT pointer is referred to (this is 
confusing). If the TOSC is valid, the TOSC is a prediction 
value. If the TOSC is invalid, the content of the RAS pointed 
by the TOSP becomes a prediction value. A decremented 
TOSP is stored into the slot pointed to by the NEXT pointer 
and the NEXT pointer is incremented.  
b. When a call instruction is fetched, the return address is 
copied into the TOSC and the incremented TOSP is stored in 
the slot pointed to by the NEXT, and the NEXT is incremented 
by one. 
 
3. When a call or return instruction commits 
a. When a call or return instruction commits, the RAS is 
updated from the shadow state registers pointed to by the 
HEAD pointer (i.e. when a call instruction is committed, the 
TOSC is pushed into the RAS and the top of the stack (TOS) is 
increased. When a return instruction is committed, the TOS is 
popped.), then the HEAD pointer is increased by one. If there 
is a fetched call or return instruction, step 2 is performed. 
b. When an instruction is determined to be mis-speculated, 
the shadow state register is flushed and HEAD and NEXT 
pointers remain pointed to the same SSR slot. TOS becomes 
TOSP and the return address pointed to by the TOS in the RAS 
becomes the TOSC.  

 

   
Figure 6. A high level schematic of RAS management 

 
3.4 Non-local control transfer and context 

switch 
Non-local control transfer is another issue of concern for the 

RAS. For instance, the language C has system functions called 
setjmp() and longjmp(). Since these instructions can bypass 
multiple stack frames without maintaining the RAS, they cause a 
misaligned stack frame. If we assume that only an unmatched 
call/return sequence can corrupt the RAS, the non-local control 
transfer problem can be solved by pushing the target address into 
the RAS and popping the RAS until a matched return address is 
found. If a matched return address is not found in the entire RAS 
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including the spilled area, we can assume that undesired 
modification of the return address is found. Context switch also 
can cause misaligned RAS. Extending the spill/fill mechanism 
can solve the problem caused by context switch: when context 
switch occurs, entries of the switched context are spilled and 
entries of the switching context are filled.     
 
4. SIMULATION 

We used the SimpleScalar tool set for the results reported in 
this section. Table 1 summarizes our baseline model, which is 
loosely modeled after the Alpha 21264.  Since return address 
prediction can be done in fetch stage as BTB lookup, 
performance overhead is only added by the hash latency. It is 
established that the latency can be reduced to average 80 cycles 
with suitable skewing of the adders [15].   

 For an experiment in this section, three SPEC2000 CPU 
benchmarks are used: gap, mcf, and parser. Since other 
benchmarks have the maximum call-depth less than 32, their 
performance would be enhanced by more than 32 RAS entries. 
Since the sequence of call and return instruction significantly 
varies the simulation result, each benchmark was simulated from 
the beginning to the end. The simulation result only shows the 
normal situation for performance analysis; once the buffer 
overflow attack has occurred, the process cannot be recovered or 
performed any further.  

 
Table 1 Baseline configurations for simulations 

Architectural parameters Value 
Instruction-window size 64 
Fetch/ Decode width 4/4 per cycle 
Issue/ Commit width  4/4 per cycle 
RAS 32 
BTB 2048-entry, 2-way 
L1 I-caches 64KB, 2-way, 32B line 
L1 D-caches 64KB, 2-way, 32B line 
L2 cache Unified, 4MB, 4-way 

(LRU), 32B line 
L1 latency 1 cycle 
L2 latency 12 cycles 
Memory latency 80 cycles 
Hash latency 80 cycles 
Chunk size 8 

 
 

Figure 7 shows the result of the new RAS management 
scheme. It compares the overall performance, expressed in 
instruction retired per cycle (IPC), for two different schemes. The 
BASIC scheme uses the RAS repair mechanism that saves return 
address stack index and restores the saved index to the TOS at 
commit stage when mis-speculation is detected. The mechanism 
is provided by SimpleScalar tool set as a default configuration. 
However, the scheme does not provide perfect return address 
prediction. “RAS with spill/fill overhead” uses the message 
authentication scheme to protect the backup storage. In this 
scheme, the spill/fill overhead occurs from memory access 
latency and hash latency. For spill operation, the overhead only 
accounts memory access latency since the hash operation can be 
performed with the memory writing operation simultaneously. 
However, the fill operation overhead accounts both memory 
latency and hash latency since the hash operation can begin only 

after the memory read operation is finished. Table 2 summarizes 
the results with reference inputs in SPEC2000 benchmarks. The 
RAS has 32 entries and the size of the chunk is 8. It shows the 
number of executed instructions for each benchmark. Since the 
new RAS management scheme achieves 100 % prediction 
success rate, it only shows the RAS prediction success rate for 
BASIC scheme. The third row shows the total number of RAS 
spill operations for each benchmark. “Max spilled chunk,” 
indicates the maximum number of chunks stored in backup 
storage at a given moment. 

 
Table 2 Summary of result 

 Mcf parser gap 
Number of 
instruction  

9168131541 13433257594 9591840728 

RAS hit 
(BASIC) 

98.9 % 94.13% 71.96 % 

# of spill 
operation 

25 456608 133034 

Max spilled 
chunks 

2 35 261 

 
 

 
 The BASIC scheme achieves a RAS hit rate of 98.9% for mcf, 

94.13% for parser, and 71.96% for gap. Therefore even 100% 
RAS hit rate the performance improvement is not significant. 
However the latency of the spill/fill operation can be offset by the 
performance improvement from an accurate return address 
prediction. Figure 6 shows the IPC comparison between the 
BASIC and the new RAS management scheme. 
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Figure7. Performance impact of new RAS management 

scheme 
 
Deeper RAS and larger chunk size reduces the frequency of 

a spill/fill operation; therefore, the performance will be improved. 
In contrast, a more shallow RAS depth and a smaller chunk size 
will result in performance degradation. Figure 8 shows the result 
of simulation for train input with various sizes of RAS and chunk 
size. For instance, a 32-entry of RAS with 8-entry of chunk 
improves the overall performance by 2% compared to the 
performance of a 16-entry of RAS with a 4-entry of chunk for 
parser.  

 
 mcf parser 

# of instruction 7136667402 7908917776 
Max call-depth 37 208 
#of RAS used 1201289 130794089 

340



  

(a) 

0

500

1000

1500

2000

16~4 16~8 32~4 32~8 64~4 64~8

SIZE (RAS - Chunk)

#o
f R

A
S 

sp
ill

s (
th

ou
sa

nd
)

mcf
parser

(b) 

0

0.01

0.02

0.03

0.04

0.05

0.06

16~4 16~8 32~4 32~8 64~4 64~8

SIZE (RAS - Chunk)

M
ax

 S
pi

lle
d 

ch
un

ks

mcf
parser

(c) 

0
0.25

0.5
0.75

1
1.25

1.5
1.75

16~4 16~8 32~4 32~8 64~4 64~8

SIZE (RAS - Chunk)

IP
C mcf

parser

 (d) 
Figure 8. Simulation result for various sizes of RAS and 

chunk (a) Common result for various sizes of RAS and chunk 
(b) The number of RAS spills operation for various sizes of 
RAS and chunk. (c) Max spilled chunks for various sizes of 
RAS and chunk (d) IPC for various sizes of RAS and chunk 

 
5. RELATED WORKS 

There are numerous software defense mechanisms that can 
prevent achievement of one of the attack steps. One mechanism 
is to prevent buffer overflow so that it can, in turn, prevent a 
buffer overflow attack. Jones and Kelly’s work [16] can prevent 
the injection of a payload and the modification of a return address 
by checking for array and pointer bounds in C program.  Libsafe 
also can prevent the injection of a payload and the modification 
of a return address [2]. Libsafe intercepts all calls to library 

functions that are known to be vulnerable and substitute them 
with a safe version of corresponding functions. Another defense 
mechanism is to allow buffer overflow but preventing that an 
attacker changes the control flow of a victim system. PC 
encoding mechanism [24, 25] encrypts and decrypts return 
addresses with semantic encryption to prevent changing control 
flow from any unexpected modification of the return address. 
When a function is called, the return address is encrypted before 
being stored into an activation record. Similarly, at a function 
return, the target address is decrypted and its integrity is checked. 
Without knowing the encryption key, an attacker cannot obtain 
control of a victim system even if the attacker can overwrite 
contents of the activation record. StackGuard is a dynamic buffer 
overflow attack detection mechanism [6, 7]. StackGuard 
implements a canary word as a detection sensor on top of the 
return address in the activation record. The mechanism assumes 
that the canary word is overwritten when a buffer overflow 
occurs and overwrites the return address. However, it is possible 
to change return address without altering the canary value [3]. An 
attacker can bypass StackGuard and StackShield by using a 
vulnerable function pointer [20] and overwriting the base pointer 
value in the activation record. RAD [5] is another dynamic 
detection mechanism to prevent buffer overflow attack. RAD 
stores return address into safe memory area where when function 
is called. By comparing the copied return address and the user 
stack return address, it can detect the buffer overflow attack. 
Another mechanism prevents executing codes in stack area. The 
solar designer’s non-executable user stack [9] allows the 
overwriting of stack contents, but malicious code in the user 
stack still cannot be executed. 

 
6. DISCUSSION  

Our new RAS management scheme can only protect stack-
based buffer overflow attack. However heap area is also 
vulnerable to buffer overflow attack. The heap based buffer 
overflow attack mechanism is similar to the stack based buffer 
overflow; it overflows a vulnerable buffer which is near the 
function pointer value in the heap area and changes the function 
pointer value to redirect the control flow to compromise the 
victim system. Since the heap based buffer overflow attack 
exploits the vulnerable function pointer in the heap area, the new 
RAS management scheme cannot prevent the attack. Hence, our 
directions for future research are to build precise test bed for 
system call and extend the mechanism to check the integrities of 
indirect branches.  

 
7. CONCLUSION 

In this paper, we have described the implementation of the 
new RAS management scheme that prevents buffer overflow 
attack. The new RAS management scheme provides perfect 
return address prediction; as a result, the integrity of the return 
addresses can be checked to detect buffer overflow attacks. 
Although the new mechanism introduces overheads generated by 
spill/fill operations, it can be offset by the performance 
improvement from accurate return address prediction with 
security enhancement.  
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