
Repairing Return Address Stack for Buffer Overflow
Protection

Yong-Joon Park
Department of Electrical and Computer

Engineering
University of Illinois at Chicago

Tel: 1-312-413-3140
ypark3 @uic.edu

Gyungho Lee
Department of Electrical and Computer

Engineering
University of Illinois at Chicago

Tel: 1-312-413-9657
ghlee @uic.edu

ABSTRACT
Although many defense mechanisms against buffer overflow

attacks have been proposed, buffer overflow vulnerability in
software is still one of the most prevalent vulnerabilities
exploited. This paper proposes a micro-architecture based
defense mechanism against buffer overflow attacks. As buffer
overflow attack leads to a compromised return address, our
approach is to provide a software transparent micro-architectural
support for return address integrity checking. By keeping an
uncompromised copy of the return address separate from the
activation record in run-time stack, the return address
compromised by a buffer overflow attack can be detected at run
time. Since extra copies of return addresses are already found in
the return address stack (RAS) for return address prediction in
most high-performance microprocessors, this paper considers
augmenting the RAS in speculative superscalar processors for
return address integrity checking. The new mechanism provides
100% accurate return address prediction as well as integrity
checking for return addresses. Hence, it enhances system
performance in addition to preventing a buffer overflow attack.

Categories and Subject Descriptors
K.6.5 [Management of Computing and information System]:
Security and protection – invasive software, unauthorized access

General Terms
Security

Keywords
computer security, intrusion tolerance, buffer overflow, computer
architecture.

1. INTRODUCTION

Buffer overflow vulnerabilities constitute a significant portion
of overall attacks at present. By overflowing a buffer near a
return address at run-time stack, an attacker can alter the control
flow of a program, which may activate the victim system into

privileged mode and execute an arbitrary code on the victim's
system. This vulnerability has been exploited by several
notorious worms such as Morris worm [13], Code Red worm [8],
W32/Blaster worm [12] and others. Since the Morris worm
incident, buffer overflow attack problems have been one of the
most critical security issues and have been studied extensively.
However, these vulnerabilities are still the most prevalent type of
security problem. According to ICAT statistics [18] for March
2003, seven of the ten most popular vulnerabilities are buffer
overflow vulnerabilities. A similar survey [statistic] is available
from CERT. Figure 1 shows the total number of advisories and
the number of advisories related to buffer overflow: buffer
overflows were 54.1% in the year 2002 and 74.1% in the third
quarter of 2003 of the total advisories.

0

10

20

30

40

50

20
03

20
02

20
01

20
00

19
99

Year

Total number of
advisory reported

Number of Buffer
Overflow reported

Figure 1. CERT Advisories Report (Oct. 16, 2003)

 Buffer overflow vulnerability exploitations are still one of the
major security issues, although numerous defense mechanisms
were introduced and security patches have been released. There
are multiple reasons for this. One reason is “afterward-patch”.
Programs are still written and distributed with the vulnerabilities,
and patch can be made only after the vulnerabilities are exploited.
Recently, the W32/Blaster worm [12] exploited buffer overflow
vulnerability in Microsoft Windows RPC implementation.
Another reason for exploitation may be program source code
accessibility. Most software solutions [5, 6, 24] are compiler-
driven patches, meaning they require source code changes and
recompilation. It is difficult and sometimes even impossible to
obtain source code for commercial software. Another reason can
be the number of programs that need to be patched. There are

 74.1%
54.1%

23.1%

48.5%

52.6%

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CF’04 April 14-16, 2004, Ischia, Italy.
Copyright 2004 ACM 1-58113-741-9/04/0004…$5.00.

335

numerous existing copies of legacy software that require patching,
making it impossible to patch all existing vulnerable programs.
 Our approach is to provide software transparent micro-
architecture support for return address integrity checking. By
keeping an uncompromised copy of return address, a
compromised return address at run-time stack can be detected.
Since extra copies of return addresses are already found in return
address stack (RAS) in high-performance microprocessors with
return address prediction, this paper considers augmenting the
RAS in modern speculative superscalar processors with return
address prediction. A simple RAS management scheme used in
current processors cannot assure the correctness of return address
integrity checking because the contents of the RAS can be
corrupted even without any attack. For the return address
integrity checking against buffer overflow attack, the RAS should
always be able to provide uncompromised correct return address.
However, the contents of the RAS can be corrupted due to its
limited size in practice and its speculative execution. This paper
proposes a new RAS management mechanism to guarantee
uncorrupted RAS contents so that it can be used for return
address integrity checking.
 The RAS employed for return address prediction is fairly
limited in size because most programs have relatively a small
call-depth. For example, the Alpha 21264 processor has 32 RAS
entries [10]. The P6 processor has 16 RAS entries [19]. Yet,
deeply nested calls or recursive functions in some programs are
able to cause an over-run corrupting the RAS since the size of the
RAS is limited. Therefore the size of the RAS must be large
enough to accommodate an arbitrary call-depth. By spilling
return addresses in the RAS to a reserved memory area, the
illusion of an infinite-size RAS can be created. However, another
vulnerability can be generated from using memory: an adversary
may be able to tamper the spill area in memory. To check the
integrity of RAS spill area in memory, we uses a memory
authentication scheme using collision-resistant hash trees [22],
similar to the one proposed by Blaise et al [15].

In speculative superscalar processors with return address
prediction, calls and return instructions speculatively update the
RAS based on the prediction at instruction fetch stage. The RAS
is corrupted by the speculative update if the prediction turns out
to be wrong. Instead of updating the RAS at the fetch stage, our
new RAS management mechanism updates the RAS at the
instruction commit stage. In order to update the RAS at the
instruction commit stage and provide return address prediction
value during instruction fetch for speculative execution, the new
management scheme uses shadow state registers (SSR) to
provide a return address prediction value. One can also say that
the SSR is kind of a “reorder buffer” (ROB) for the RAS. After a
return or a call instruction is committed, the RAS is updated from
the SSR as the register file in out-of-order processors is updated
from the ROB at instruction commit stage. In this way, RAS
corruption from a mis-speculated return or from call instructions
can be prevented with a small overhead. This overhead can be
negligible and offset by performance enhancement from reduced
return address mis-prediction.

Non-local control transfer is another concerned issue of the
RAS. For instance, the language C has system functions called
setjmp(), and longjmp(). Since these instructions can bypass
multiple stack frames without maintaining the RAS, they cause a
misaligned stack frame. If we assume that only unmatched
call/return sequence can corrupt RAS, non-local control transfer

problem can be solved by pushing the target address into RAS
and popping RAS until matched return address is found. If the
matched return address is not found in the entire RAS including
the spilled area, one can assume that undesired modification of
the return address is found. Context switch also can cause
misaligned RAS. Extending the spill/fill mechanism can solve the
problem caused by a context switch: when a context switch
occurs, entries of the switched context are spilled and entries of
the switching context are filled. Here, you should explain the
problem of the context switch before you talk about the solution
(the spill/fill mechanism).

The remainder of this paper is organized as follows. Section 2

studies buffer overflow attack. Section 3 describes the new RAS
management scheme. The simulation result and evaluation are in
Section 4. Section 5 summarizes related works. The discussion is
in section 6 and section 7 concludes the paper

2. BUFFER OVERFLOW ATTACKS

Buffer Overflow Attack is the most common attack to gain
control of a victim system both locally and remotely. To control
the victim system, an attacker has to gain sufficient privilege.
However, an attacker does not have the privilege to control a
victim system in most cases. Therefore, an attacker subverts the
function of a privileged program and injects its attack code to be
executed with the privilege. To achieve the attack, an attacker
typically follows three steps:

1. Inject attack code or find suitable existing code for attack.
2. Change the control flow of the privileged program so
that the attack code can be executed with sufficient privilege.
3. Execute desired code.

 In order to achieve these steps, the following conditions
should be met: the attacker must be able to change the control
flow of the privileged program so that the attacker can
compromise the victim system and the attack code should be
placed in an executable area or already exist in the code area. One
popular attack is known as stack smashing. A stack contains
parameters of called functions and return address. A stack
smashing attack fills up the stack area and modifies the return
address to an attacker’s desired location. In this attack method,
an adversary can achieve first two steps easily. An adversary fills
the stack area with the desired attack code and replace return the
address with the location of the attack code.

2.1. Buffer overflow error

A buffer overflow is the result of streaming a large amount of
unexpected data into a buffer. The problem arises because while a
stack grows down, a buffer grows up in the run time stack area.
So if a buffer overflow is generated it overwrites the old function
pointer (FP) and return address. Figure 2 shows a typical buffer
overflow coding error.

This code generates a segmentation violation error. The
function func() copies a supplied string without bounds checking
by using strcpy(). Simple strcpy() copies the contents of *str (
string) into buffer[] until a null character is found in the string.
Notice the buffer size is much smaller than the string size; hence
a buffer overflow is generated. After filling the buffer with ‘A’,
the code will overwrite the old FP and return address and even
*str with ‘A.’ Since the ASCII value for ‘A’ is 0x41, the
overwritten value for the return address is 0x41414141. This is

336

outside of the process address space, causing the segmentation
violation. This vulnerability results in critical security problems.
Since stack area is executable area, arbitrary code can be
executed in the stack. By injecting an attacker's desired attack
code instead of ‘A’ and modifying the return address to point to
the attack code, an attacker can gain control of a victim system.

Figure 2. Typical buffer overflow error

2.2. Attack code (payload)
Attack code can be a hacker’s own program or system

library routine [1, 3, 19]. Figure 3 shows the example code
to spawn a shell in a C program in Linux system. This
code is small and very simple, but it provides a powerful
shell for hackers. The hackers can via a buffer overflow
put the shell code in the buffer area as a payload. From that
they can gain complete control of the victim system.
Another attack code can be a system library routine.

#include <stdio.h>

void main() {
char *name[2];
name[0] = “/bin/sh”;
name[1] = NULL;
execve (name[0], name,
NULL);}

Figure 3. An example C code for spawning a shell and its
binary code

 It is also possible to use existing library routines as malicious

code [3]. There is a way to discover the address of useful library

routines that can be used to download the executable program of
the attacker’s choice. The routine saves executable code as a file
and automatically executes the downloaded program from
Internet. In this case, buffer overflow attack facilitates
downloading a virus or malicious code without user’s consent.
 W32/Blaster worm [12] exploits the buffer overflow
vulnerability in Microsoft RPC implementation to generate
Denial of Service attack on Microsoft windows update server.
The worm scans a vulnerable system and generates buffer
overflow attack on the vulnerable system to download
msblast.exe file from the compromising host. After downloading
the file, it executes the file to propagate to other system.

3. MICRO-ARCHITECTURAL DEFENSE
MECHASIM (RAS MANAGEMENT)

3.1.RAS size and Overflow/Underflow control

Since the RAS has fixed number of entries, more calls than
just the RAS entries can corrupt the RAS, which is a circular
buffer. Thereafter, corresponding returns cause underflow by
popping empty stack. In order to avoid return address corruption
resulting from capacity limitation, the RAS is spilled and filled in
case of stack overflow and underflow. To monitor the number of
entries in the stack, a bottom of stack (BOS) pointer is introduced.
Hence the number of stack entries can be calculated from the
difference between the top of stack (TOS) and the BOS. When
the number of entries in the RAS exceeds a certain amount, a
portion of the RAS is spilled into backup storage. A chunk of
return address from the RAS is spilled from the BOS into
memory and then the BOS pointer is adjusted to point to the
bottom of the RAS. Note that the RAS is a circular buffer. When
the number of contents is below a given threshold, the spilled
return addresses are loaded back from backup storage. A chunk is
filled from backup storage to RAS and then the BOS pointer is
adjusted. Since only a limited number of portions is spilled and
filled, the operation can be paralleled with other instructions.
Therefore, the overhead from accessing memory to perform a
spill and fill operation can be minimized.

The number of spill and fill operation is affected by the size
of RAS and the size of a chunk. Since a deeper RAS can reduce
the frequency of spill and fill operation, a deeper RAS is
desirable. Most programs in SPEC2000 benchmark show the
maximum call-depth less than 64.

The size of a chunk can also affect the frequency of a spill
and fill operation. In other words, the sequence of call and return
instructions can affect the frequency of spill and fill operation.
For instance, after spill operation, when consecutive calls are
issued more than the size of a chunk, another spill operation will
occur. Hence, smaller chunk size would cause frequent spill and
fill operations. However, if the size of the chunk were improperly
large, it would cause an immediate spill/fill operation after the
fill/spill operation.

3.2.Backup storage protection

Although RAS spill and fill procedures are not visible in a
program, an adversary could access backup storage and change
data since backup storage is in a memory area. Therefore, the
reserved memory area should be protected from any unauthorized
(try using words other than malicious) access. In our RAS
management scheme, we consider two different approaches. One

*str

Ret

old FP

buffer[16]

Stack growth

Buffer growth

Higher memory

Lower memory

“\xeb\xlf\x5e\x89\x76\x80\x31
\xc0\x88\x46\x07\x89\x46\x0c
\xb0\x0b\x89\xf3\x8d\x4e\x08
\x8d\x56\x0c\xcd\x80\x31\xdb
\x89\xd8\x40\xcd\x80\xe8\xdc
\xff\xff/bin/sh”;

void func(char *str){
char buffer[16];

 strcpy (buffer,str);}
void main(){
 char string[256];
 int i;

 for (i=0; i< 255; i ++)
string [i]= ‘A’;

 func(string);}

337

approach is to utilize virtual memory protection at an OS level.
Most microprocessors support virtual memory protection at the
page level. The size of a page is fixed at 4 KB for the IA-32
processor and from 8KB up to 64KB for the Alpha 21264. In a 4
KB-page, 1024 32-bit return addresses can be stored. If the
number of spilled return address is greater than 1024, another 4
KB-page can be reserved. In this way, unprivileged backup
storage access can be prevented. However, if the number of
spilled return addresses is much smaller than 1024, 4 KB of
memory is wasted, which is considered to be very small overhead
in our current system. If we assume that there is no physical
attack, the virtual memory protection can preserve backup
storage from malicious access in a trusted OS.

Another approach is to validate backup storage using memory
authentication. Blaise et al implemented an integrated Merkle
tree / caching scheme to efficiently authenticate all or part of the
memory area [15]. A Merkle tree [22] is a hash construct that
verifies the integrity of a data object. Each leaf is a data object
and each node in a tree is hash value for concatenation of
children nodes. Assuming that the root value is retrieved from a
trusted source, the integrity of each data object can be verified
with a small amount of hash data. Figure 4 shows the layout of a
Merkle tree where H is a collision intractable hash function and
symbol ‘+’ denotes concatenation.

By checking the hash value with the value stored in its parents

and by repeating verification until a value in a trusted source is
found, we can verify the integrity of each node. For instance,
when only “Root” hash value is in secure place, in order to verify
the integrity of d1, calculations of hash values A, B, C, D, E and
F are required. However if E is also in trusted source, the
integrity of d1 can be verified with only B and E. In practice, any
one-way hash function such as MD2, MD5 [26], or SHA can be
used as a collision-resistant function. In order to reduce the
number of hash check, k-ary trees can be used. For a balanced
tree, the number of hash checks to perform is logk(N), where N is
the amount of memory protected and k is the number of children
nodes. The number of hash checks is same as the average depth
of a tree.

Hash-tree based memory verification computes and checks a
hash for every read from memory and it should compute and
store a hash on write-back memory for a large amount of memory
area in a secure processor such as XOM [14, 21]. If the memory
authentication were implemented on normal processor, any
memory write-back, which includes unauthorized memory write,
would update hash value and memory. Hence it cannot detect
unauthorized data modification. However, although our approach

is based on a normal processor, this type of memory
authentication can be applied to ensure the integrity of backup
storage, because the memory authentication only verifies the
backup storage, where is only accessed by the RAS, and the hash
value is only updated by the RAS spill operation. In other words,
RAS spill operation is trusted because it is transparent for
software and independent from other running programs.

Figure 5 shows the high level schematic for backup storage
authentication. A new hardware RAS Engine (RASE) manages
the RAS. The RASE monitors the RAS, and if the number of
RAS entries reaches a threshold, the RASE spills and fills the
RAS into and from backup storage. During the spill and fill
operation, a hash unit generates hash value for a spilled or filled
chunk to check the integrity of the data. During spill operation,
the hash value is stored into private memory area. When a chunk
of return addresses is filled from reserved area in main memory,
the hash unit calculates hash value and checks the integrity of the
data. This authentication process can be performed
simultaneously with other work. When a fill occurs, the spilled
return address will be passed into the RAS from backup storage
while the hashing unit checks the integrity of data by checking
hash value in private memory and calculated hash value. Later,
when the hashing unit detects unauthorized modification of data,
it raises an exception to halt the program.

Figure 5. A high level schematic for backup storage

authentication

 To evaluate the cost of our new RAS management scheme we

consider MD5 [26] algorithm. MD5 takes 512-bit block and
generates 128-bit digest. Hence, 4K of hash values can be stored
in 64KB private memory. When the hash value exceeds the
available storage, two of the oldest hash values are concatenated
and new hash value is generated. For instance, let’s assume that
private memory can have 3 hash values. When, in Figure 3, hash
value D is stored after has value A, B, and C, parent hash value E
is generated from the concatenation of hash value A and B to
replace A and B with D and E. After verifying the corresponding
chunk of hash value D, oldest two chunks are read and hash
values A and B are generated to check the integrity of two chunks
with hash value E. Upon successful verification, hash values of D
and E are replaced with A and B.

3.3.RAS update and speculation.

 There are two basic approaches to avoid RAS corruption
resulting from a mis-speculated RAS update. One way is to
preserve the history of the RAS, similar to Smith and Pleszkun’s
history file [14], and recover the RAS from a mis-speculated
update. Skadron et al [23] has shown the repair mechanism to be
very accurate, thereby improving performance relative to a stack

Root = H (E+F)

E = H (A+B) F = H (C+D)

A =H(d1) B =H(d2) C =H(d3) D=H(d4)

Figure 4. Merkle Tree

338

with no repair mechanism. The repair mechanism functions by
storing the top of the stack pointer (TOSP) and the top of the
stack pointer contents (TOSC) to shadow state registers and the
RAS when a call or return instruction is fetched. After detecting a
mis-speculation during the commit stage, the TOSP and the
TOSC are restored to the RAS. Another approach to protect the
RAS from a mis-speculated update is to keep uncommitted return
or call state information in shadow state registers and update the
RAS from it after the instruction is committed, similar to the
future file. In this scheme, only the call instruction stores the
TOSP and the TOSC into shadow state registers, while the return
instruction stores only the TOSP into shadow state registers.
When mis-speculation is detected, the shadow status registers are
simply flushed. In contrast to the first approach of the RAS repair
mechanism, the second approach saves newer state information
to the shadow state register. Since the RAS repair mechanism
updates the RAS speculatively in the instruction fetch stage, it
updates the RAS more frequently than the second approach. How
often the RAS is updated affects the frequency of the
spilling/filling of the RAS contents to and from the reserved
memory area. Hence, we chose the second approach.

RASE also manages the shadow status registers (SSR). If a
return or call instruction is determined to be mis-speculated, it
flushes the SSR. Figure 6 shows a high level schematic of our
return address stack mechanism. There are two pointers – HEAD
and NEXT for the SSR –, which behave similarly to the reorder
buffer. The NEXT pointer points to the next available slot in the
SSR. The HEAD pointer points to the SSR slot that contains the
information of the RAS for the oldest return or call instruction
not committed yet. The shadow register has two entries for each
slot: the top of stack pointer (TOSP) and the top of stack contents
(TOSC). When a call instruction is fetched, it updates the SSR
with increased the TOSP and a return address as the TOSC.
When return instruction is fetched, the SSR is updated with
decreased the TOSP and invalidated the TOSC. It searches a
return address from the NEXT pointer to provide a return address
prediction value. When a call or return instruction is committed,
the RAS is updated from the TOSP and the TOSC pointed to by
the HEAD pointer. If the TOSC is invalid, only the TOSP
updates the TOS in the RAS since the entry corresponds to a
return instruction. The size of the SSR depends on the number of
in-flight call and return instruction. For example, a MIPS R10000
processor supports up to four in-flight call and return instructions.
Similar requirement apply based on pipeline depth between the
instruction fetch and commit stages. For deeper pipelined
processor, the depth of speculation will dictate the SSR size.
When the SSR is full, the next instruction may overwrite the
oldest instruction entries since the last instruction, which was
pointed by the HEAD pointer, is already committed. The
summarized steps are:

1. For the case where the NEXT and the HEAD pointers
point to the same location, the TOSP points to the top of the
RAS as the TOS does
a. When a return instruction is fetched, the value pointed by
TOS in the RAS is the prediction value. TOSP becomes
TOSP-1 and is stored into next available SSR slot (pointed by
the NEXT pointer). The TOSC field is marked as invalid and
the NEXT pointer is incremented by one.
b. When a call instruction is fetched, the return address (PC+
instruction size) is copied into the next available TOSC field.

Increased TOSP is stored into the TOSP field in the SSR slot
(pointed by the NEXT pointer) and then the NEXT pointer is
incremented by one.

2. For the case where a call or return instruction is already
fetched but not committed yet
a. When a return instruction is fetched, the previous slot of
the slot pointed to by the NEXT pointer is referred to (this is
confusing). If the TOSC is valid, the TOSC is a prediction
value. If the TOSC is invalid, the content of the RAS pointed
by the TOSP becomes a prediction value. A decremented
TOSP is stored into the slot pointed to by the NEXT pointer
and the NEXT pointer is incremented.
b. When a call instruction is fetched, the return address is
copied into the TOSC and the incremented TOSP is stored in
the slot pointed to by the NEXT, and the NEXT is incremented
by one.

3. When a call or return instruction commits
a. When a call or return instruction commits, the RAS is
updated from the shadow state registers pointed to by the
HEAD pointer (i.e. when a call instruction is committed, the
TOSC is pushed into the RAS and the top of the stack (TOS) is
increased. When a return instruction is committed, the TOS is
popped.), then the HEAD pointer is increased by one. If there
is a fetched call or return instruction, step 2 is performed.
b. When an instruction is determined to be mis-speculated,
the shadow state register is flushed and HEAD and NEXT
pointers remain pointed to the same SSR slot. TOS becomes
TOSP and the return address pointed to by the TOS in the RAS
becomes the TOSC.

Figure 6. A high level schematic of RAS management

3.4 Non-local control transfer and context

switch
Non-local control transfer is another issue of concern for the

RAS. For instance, the language C has system functions called
setjmp() and longjmp(). Since these instructions can bypass
multiple stack frames without maintaining the RAS, they cause a
misaligned stack frame. If we assume that only an unmatched
call/return sequence can corrupt the RAS, the non-local control
transfer problem can be solved by pushing the target address into
the RAS and popping the RAS until a matched return address is
found. If a matched return address is not found in the entire RAS

339

including the spilled area, we can assume that undesired
modification of the return address is found. Context switch also
can cause misaligned RAS. Extending the spill/fill mechanism
can solve the problem caused by context switch: when context
switch occurs, entries of the switched context are spilled and
entries of the switching context are filled.

4. SIMULATION

We used the SimpleScalar tool set for the results reported in
this section. Table 1 summarizes our baseline model, which is
loosely modeled after the Alpha 21264. Since return address
prediction can be done in fetch stage as BTB lookup,
performance overhead is only added by the hash latency. It is
established that the latency can be reduced to average 80 cycles
with suitable skewing of the adders [15].

 For an experiment in this section, three SPEC2000 CPU
benchmarks are used: gap, mcf, and parser. Since other
benchmarks have the maximum call-depth less than 32, their
performance would be enhanced by more than 32 RAS entries.
Since the sequence of call and return instruction significantly
varies the simulation result, each benchmark was simulated from
the beginning to the end. The simulation result only shows the
normal situation for performance analysis; once the buffer
overflow attack has occurred, the process cannot be recovered or
performed any further.

Table 1 Baseline configurations for simulations

Architectural parameters Value
Instruction-window size 64
Fetch/ Decode width 4/4 per cycle
Issue/ Commit width 4/4 per cycle
RAS 32
BTB 2048-entry, 2-way
L1 I-caches 64KB, 2-way, 32B line
L1 D-caches 64KB, 2-way, 32B line
L2 cache Unified, 4MB, 4-way

(LRU), 32B line
L1 latency 1 cycle
L2 latency 12 cycles
Memory latency 80 cycles
Hash latency 80 cycles
Chunk size 8

Figure 7 shows the result of the new RAS management
scheme. It compares the overall performance, expressed in
instruction retired per cycle (IPC), for two different schemes. The
BASIC scheme uses the RAS repair mechanism that saves return
address stack index and restores the saved index to the TOS at
commit stage when mis-speculation is detected. The mechanism
is provided by SimpleScalar tool set as a default configuration.
However, the scheme does not provide perfect return address
prediction. “RAS with spill/fill overhead” uses the message
authentication scheme to protect the backup storage. In this
scheme, the spill/fill overhead occurs from memory access
latency and hash latency. For spill operation, the overhead only
accounts memory access latency since the hash operation can be
performed with the memory writing operation simultaneously.
However, the fill operation overhead accounts both memory
latency and hash latency since the hash operation can begin only

after the memory read operation is finished. Table 2 summarizes
the results with reference inputs in SPEC2000 benchmarks. The
RAS has 32 entries and the size of the chunk is 8. It shows the
number of executed instructions for each benchmark. Since the
new RAS management scheme achieves 100 % prediction
success rate, it only shows the RAS prediction success rate for
BASIC scheme. The third row shows the total number of RAS
spill operations for each benchmark. “Max spilled chunk,”
indicates the maximum number of chunks stored in backup
storage at a given moment.

Table 2 Summary of result

 Mcf parser gap
Number of
instruction

9168131541 13433257594 9591840728

RAS hit
(BASIC)

98.9 % 94.13% 71.96 %

of spill
operation

25 456608 133034

Max spilled
chunks

2 35 261

 The BASIC scheme achieves a RAS hit rate of 98.9% for mcf,

94.13% for parser, and 71.96% for gap. Therefore even 100%
RAS hit rate the performance improvement is not significant.
However the latency of the spill/fill operation can be offset by the
performance improvement from an accurate return address
prediction. Figure 6 shows the IPC comparison between the
BASIC and the new RAS management scheme.

0

0.5

1

1.5

2

mcf parser gap

Benchmarks

IP
C

BASIC

RAS with spill/fill
overhead

Figure7. Performance impact of new RAS management

scheme

Deeper RAS and larger chunk size reduces the frequency of

a spill/fill operation; therefore, the performance will be improved.
In contrast, a more shallow RAS depth and a smaller chunk size
will result in performance degradation. Figure 8 shows the result
of simulation for train input with various sizes of RAS and chunk
size. For instance, a 32-entry of RAS with 8-entry of chunk
improves the overall performance by 2% compared to the
performance of a 16-entry of RAS with a 4-entry of chunk for
parser.

 mcf parser

of instruction 7136667402 7908917776
Max call-depth 37 208
#of RAS used 1201289 130794089

340

(a)

0

500

1000

1500

2000

16~4 16~8 32~4 32~8 64~4 64~8

SIZE (RAS - Chunk)

#o
f R

A
S

sp
ill

s (
th

ou
sa

nd
)

mcf
parser

(b)

0

0.01

0.02

0.03

0.04

0.05

0.06

16~4 16~8 32~4 32~8 64~4 64~8

SIZE (RAS - Chunk)

M
ax

 S
pi

lle
d

ch
un

ks

mcf
parser

(c)

0
0.25

0.5
0.75

1
1.25

1.5
1.75

16~4 16~8 32~4 32~8 64~4 64~8

SIZE (RAS - Chunk)

IP
C mcf

parser

 (d)
Figure 8. Simulation result for various sizes of RAS and

chunk (a) Common result for various sizes of RAS and chunk
(b) The number of RAS spills operation for various sizes of
RAS and chunk. (c) Max spilled chunks for various sizes of
RAS and chunk (d) IPC for various sizes of RAS and chunk

5. RELATED WORKS

There are numerous software defense mechanisms that can
prevent achievement of one of the attack steps. One mechanism
is to prevent buffer overflow so that it can, in turn, prevent a
buffer overflow attack. Jones and Kelly’s work [16] can prevent
the injection of a payload and the modification of a return address
by checking for array and pointer bounds in C program. Libsafe
also can prevent the injection of a payload and the modification
of a return address [2]. Libsafe intercepts all calls to library

functions that are known to be vulnerable and substitute them
with a safe version of corresponding functions. Another defense
mechanism is to allow buffer overflow but preventing that an
attacker changes the control flow of a victim system. PC
encoding mechanism [24, 25] encrypts and decrypts return
addresses with semantic encryption to prevent changing control
flow from any unexpected modification of the return address.
When a function is called, the return address is encrypted before
being stored into an activation record. Similarly, at a function
return, the target address is decrypted and its integrity is checked.
Without knowing the encryption key, an attacker cannot obtain
control of a victim system even if the attacker can overwrite
contents of the activation record. StackGuard is a dynamic buffer
overflow attack detection mechanism [6, 7]. StackGuard
implements a canary word as a detection sensor on top of the
return address in the activation record. The mechanism assumes
that the canary word is overwritten when a buffer overflow
occurs and overwrites the return address. However, it is possible
to change return address without altering the canary value [3]. An
attacker can bypass StackGuard and StackShield by using a
vulnerable function pointer [20] and overwriting the base pointer
value in the activation record. RAD [5] is another dynamic
detection mechanism to prevent buffer overflow attack. RAD
stores return address into safe memory area where when function
is called. By comparing the copied return address and the user
stack return address, it can detect the buffer overflow attack.
Another mechanism prevents executing codes in stack area. The
solar designer’s non-executable user stack [9] allows the
overwriting of stack contents, but malicious code in the user
stack still cannot be executed.

6. DISCUSSION

Our new RAS management scheme can only protect stack-
based buffer overflow attack. However heap area is also
vulnerable to buffer overflow attack. The heap based buffer
overflow attack mechanism is similar to the stack based buffer
overflow; it overflows a vulnerable buffer which is near the
function pointer value in the heap area and changes the function
pointer value to redirect the control flow to compromise the
victim system. Since the heap based buffer overflow attack
exploits the vulnerable function pointer in the heap area, the new
RAS management scheme cannot prevent the attack. Hence, our
directions for future research are to build precise test bed for
system call and extend the mechanism to check the integrities of
indirect branches.

7. CONCLUSION

In this paper, we have described the implementation of the
new RAS management scheme that prevents buffer overflow
attack. The new RAS management scheme provides perfect
return address prediction; as a result, the integrity of the return
addresses can be checked to detect buffer overflow attacks.
Although the new mechanism introduces overheads generated by
spill/fill operations, it can be offset by the performance
improvement from accurate return address prediction with
security enhancement.

8. ACKNOWLEDGMENTS
This work is supported by the NSF grant CCR-0242222.

341

9. REFERENCES
[1] Aleph One. Smashing the stack for fun and profit, Phrack
Magazine, 7(49): File 14,1996

[2] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent
run-time defense against stack smashing attacks. Proceedings of
the USNIX Annual Technical Conference, June 2000.

[3] Bulba and Kil3r. Bypassing StackGuard & Stackshield.
Pharck magazine vol. 11 Issue 56

[4] P.Y. Chang, E. Hao, and Y.N. Patt. Alternative
implementations of hybrid branch predictors. Proceeding of
Micro-28, page 252-257, Dec. 1995

[5] Tzi-Cker Chiveh and Fu-Hau Hsu. RAD: A compile-time
solution to Buffer Overflow Attacks. Proceeding of 21st
International conference on Distributed Computing system, 2001

[6] Crispin Cowan, Calton Pu, David Maier, Heather Hinton,
Peat Bake, Steve Beattie, Aron Grier, Perry Wagle, and Qian
Zhang. StackGuard: Automatic Detection and prevention of
Buffer-Overflow Attacks. Proceeding of the 7th USENIX security
symposium, 1998

[7] Crispin Cowan, Calton Pu, David Maier, Heather Hinton,
Peat Bakke, Steve Beattie, and Jonathan Walpole. Buffer
Overflows: Attacks and defense for the vulnerability of the
Decade. DARPA Information survivability Conference and Expo
DISCEX, 1999

[8] Roman Danyliw and Allen Householder. CERT Advisory
CA-2001-19: Code Red Worm Exploiting Buffer Overflow IN
IIS Indexing Service DLL. http://www.cert.org/advisories/CA-
2001-19.html, Jul. 2001

[9] Solar Designer. Non-Executable user stack.
http://www.openwall.com/

[10] Compaq Computer Corporation. Alpha 21264/EV6
Microprocessor Hard-ware Reference Manual. Sept. 2000.

[11]DilDog. The Tao of Windows Buffer Overflow.
http://www.cultdeadcow.com/cDc_files/cDc-351/

[12] Chad Dougherty, Jeffrey Havrilla, Shawn Hernan, and
Marty Lindner. CERT Advisory CA-2003-20 W32/Blaster worm.
http://www.cert.org/advisories/CA-2003-20.html

[13] Mark W. Eichin and Jon A.Rochlis. With microscope and
tweezers: An analysis of the Internet virus of November 1988.
Proceeding of the IEEE Symposium on Research in Security and
Privacy, 1989

[14] J. E. Smith, and A. R. Pleszkun. Implementing precise
interrupts in pipelined processors. IEEE Trans on Computer
37:5,1988

[15] Blaise Gassend, G. Edward suh, Dwain Clarke Marten Van
Dijk, Srivas Devadas. Cache and Merkle trees for efficient
Memory Authentication. Proceedings of the 9th High
Performance Computer Architecture Symposium, February 2003.

[16] R.W.M. Jones and P.H.J. Kelly. Backward-compatible
bounds checking for arrays and pointers in C programs.
Proceedings of the 3rd International Workshop on Automated
Debugging, 1997

[17] J. L Hennesy, D. A. Patterson. Computer Architecture A
quantitative approach. Morgan Kaufman publisher Inc. 1996

[18] ICAT Metabase A CVE Based Vulnerability Database,
http://www.icat.nist.gov/icat.cfm

[19] Intel Corporation. IA-32 Intel Architecture Software
Developer’s Manual. 2003

[20] Klog. Frame pointer overwrite. Pharack magazine vol.9.
Isuue 55

[21] David Lie, Chandramohan Thekkath, Mark Mitchell, and
Patrick Lincoln. Architectural Supports for Copy and Tamper
Resistant Software. APOLS-IX 2000 Cambridge, Massachusetts.
2000

[22] Ralph Merkle. Protocols for public key cryptography. IEEE
Symposium on Security and privacy. Page 122-134, 1980

[23] K. Skadron, P. S. Ahuja, M. Martonosi and D.W. Clark.
Improving prediction for Procedure Returns with Return-
Address-Stack Repair Mechanisms. Proceedings of the 31st
Annual ACM/IEEE international symposium on
Microarchitecture, page 259-271, Dec. 1998

[24] A. Tyagi, and G. Lee. Encoded program counter: Self
Protection from Buffer Overflow Attacks. Proceedings of
International conference on Internet Computing (IC’2000), June
2000

[25] C. Pyo and Gyungho Lee. Encoding Function Pointers and
Memory Arrangement Checking against Buffer Overflow Attack.
Proceeding of the Fourth International Conference on
Information and Communications Security (as Lecture Notes in
Computer Science Vol. 2513, Springer-verlag), Singapore, Dec.
2002.

[26] R. Rivest. RFC1321: The MD-5 message-Digest Algorithm,
1992

342

